ON THE POINTWISE ERGODIC THEOREM ON L^p FOR ARITHMETIC SETS

BY

J. BOURGAIN *IHES, 35 Route de Chartres, 91440 Bures-sur- Yvette, France*

ABSTRACT

The purpose of this note is to show how the results of [B] on the pointwise ergodic theorem for L^2 -functions may be extended to L^p for certain $p < 2$. More precisely, we give a proof of the almost sure convergence of the means

$$
(1) \qquad \qquad \frac{1}{N} \sum_{1 \le n \le N} T^{(n)} f \qquad (t \ge 1)
$$

given a dynamical system (Ω, B, μ, T) and f of class $L^p(\Omega, \mu), p > (\sqrt{5} + 1)/2$.

1. Reduction

Ergodic means of the form (1) and more general were studied in [B] and almost sure convergence shown assuming f is an $L^2(\mu)$ -function. Extending this result to L^p , $p < 2$ requires additional work. We will only consider here sets of the form $\{n^t | n = 1, 2, ...\}$ $(t > 1)$ for the sake of simplicity, but our argument may be adapted to sets $\{\varphi(n) \mid n = 1, 2, ...\}$, φ a polynomial with integer coefficients, as well. Presently, our method, based on interpolation, does not cover the entire range $p > 1$ and the condition $p > (\sqrt{5} + 1)/2$ seems needed.

By standard truncation arguments and the L^2 -result proved in [B], it suffices to obtain the maximal inequality on L^p , i.e.,

$$
(2) \qquad \qquad \bigg\| \sup_{N} \left(\frac{1}{N} \sum_{1 \leq n \leq N} T^{(n)} f \right) \bigg\|_{L^{p}(\mu)} \leq C \, \| f \|_{L^{p}(\mu)}.
$$

Received September 30, 1987

74 J. BOURGAIN Isr. J. Math.

This is a problem of a "finite nature" and, as shown in [B], the general case is equivalent to the case of the shift on Z. Thus let

$$
\mathscr{M}f=\sup_{N}|f*K_{N}|
$$

where

(3)
$$
K_N = \frac{1}{N} \sum_{1 \le n \le N} \delta_{(n')}.
$$

We prove an inequality

(4) II ~af II ,,<z> ---< *C(p)II* f [I,~<z)

provided $p > (1 + \sqrt{5})/2$. This restriction seems only technical. The main purpose of this paper is to show that the methods exploited in [B] are not purely L^2 .

The argument is based on the same ingredients as for $p = 2$, proved in [B], to which the reader is referred for some of the facts listed below.

2. Exponential sums

The dual group of Z is the circle Π and the Fourier transform $\hat{K}_N(\alpha)$, $\alpha \in \Pi$, of K_N is given by the Gauss-Weyl sum

(5)
$$
\hat{K}_N(\alpha) = \frac{1}{N} \sum_{1 \leq n \leq N} e^{-2\pi i n \alpha}.
$$

Fix $v = \frac{1}{100}$ and define major arcs $\mathcal{M}_0 = {\alpha \in \Pi$; $|\alpha| < N^{-t}$ and for $1 \le a <$ $q < N^{\nu}$, $(a, q) = 1$, $\mathcal{M}(q, a) = \{ \alpha \in \Pi; | \alpha - a/q | < N^{-1+\nu} \}.$

LEMMA 1. *If* $\alpha \in \Pi$ does not belong to a major arc, $|\hat{K}_N(\alpha)| \leq N^{-\delta}$ for some $\delta = \delta(t) > 0.$

LEMMA 2. If $\alpha \in \mathcal{M}(q, a)$, $\alpha = a/q + \beta$, then $\hat{K}_N(\alpha) = S(q, a)\hat{k}(N\beta) + \hat{k}(\alpha)$ $O(N^{-v})$ where

$$
S(q, a) = \frac{1}{q} \sum_{0 \leq r < q} e^{-2\pi i r' a/q} \quad \text{and} \quad k(x) = t^{-1} x^{1/t - 1} \chi_{[0,1]}(x).
$$

LEMMA 3. *If q =* $\prod p_i^m$ *is the prime decomposition of q and* $(a, q) = 1$ *, then*

$$
|S(q,a)| \leq C \prod p_i^{-m_i}
$$

where we let

 $m = 0$ *if* $m = 0$, $\dot{m} = \frac{1}{2}$ *if* $m = 1$, $\dot{m} = 1$ *if* $2 \le m < t$ *and* $\dot{m} = \frac{m}{t}$ *if* $m \ge t$.

3. Partitioning the rationals

Fix $0 < \rho < 1$ and let { p_i } be the sequence of consecutive primes. Define for $1 \leq k \leq 2^{ps}$

(6)
$$
Q_{s,k} = \prod_{(k-1)2^s < j \leq k2^s} p_j^{st}.
$$

Hence

$$
(7) \t\t\t\t2 log Qs,k \leq C s2 2s.
$$

Define

(8)
$$
\mathcal{R}_s = {\alpha \in \Pi \mid \alpha Q_{s,i} Q_{s,k} \in \mathbb{Z} \text{ for some } 2 \leq k \leq 2^{sp}}
$$

forming an increasing sequence whose union is $\Pi \cap Q$. Since

$$
\mathcal{R}_s = \mathbf{Z}_{Q_{s,1}} \cup \bigcup_{2 \leq k \leq 2^{p_s}} [\mathbf{Z}_{Q_{s,1} \cdot Q_{s,k}} \setminus \mathbf{Z}_{Q_{s,1}}]
$$

where

$$
\mathbf{Z}_Q = \{a/Q \mid 0 \leq a < Q\},
$$

 \mathscr{R}_s is the disjoint union of $2^{\rho s}$ differences of cyclic subgroups of Π . The next fact is straightforward from Lemma 3 and (8).

LEMMA 4. *If* $a/q \in \Pi \setminus \mathcal{R}$, then $|S(q, a)| \leq C2^{-(1+\rho)s/2}$.

4. Construction of approximate kernels

For $\alpha \in \mathbf{Q} \cap \Pi$, write $\hat{S}(\alpha) = S(q, a)$ if $\alpha = a/q = 1$. By (7), there is an integer D_s for each s, satisfying

(9)
$$
{}^{2}\log Q_{s,k} < \frac{1}{100} {}^{2}\log D_{s}
$$
 $(1 \leq k \leq 2^{\varphi})$ and $\log D_{s} \leq Cs^{2}2^{s}$.

Let φ be a smooth function on **R**, $\varphi = 1$ on $\left[-\frac{1}{10}, \frac{1}{10} \right]$ and $\varphi = 0$ outside $\left[-\frac{1}{5}, \frac{1}{5} \right]$. Substitute K_N for a kernel L_N whose Fourier transform is given by

76 J. BOURGAIN Isr. J. Math.

$$
(10) \quad \hat{L}_N(\alpha) = \hat{k}(N'\alpha)\varphi(\alpha) + \sum_{s=0}^{\infty} \sum_{\zeta \in \mathcal{X}_s \setminus \mathcal{X}_{s-1}} \hat{S}(\zeta)\hat{k}(N'(\alpha-\zeta))\varphi(D_s(\alpha-\zeta)).
$$

There is the following approximation property:

LEMMA 5. *For* $p' < p$, $\|\hat{K}_N - \hat{L}_N\|$ $\leq C(\log N)^{-(1+\rho)/2}$.

PROOF. If $\xi \neq \xi'$ in \mathcal{R}_s , then clearly $|\xi - \xi'| > 1/10D_s$. Also, by van der Corput's lemma, $|\hat{k}(\lambda)| \leq C |\lambda|^{-1/t}$. From Lemma 4, it follows that for $\mathcal{R} \subset \mathcal{R}_{s} \setminus \mathcal{R}_{s-1}$

$$
\left|\sum_{\zeta \in \mathscr{A}} \tilde{S}(\zeta) \hat{k}(N^{t}(\alpha - \zeta)\varphi(D_{s}(\alpha - \zeta))\right| \leq C2^{-s(1+\rho)/2} \sup_{\zeta \in \mathscr{A}} \left[1 + N^{t}|\alpha - \zeta|\right]^{-1/t}.
$$
\n(11)

Estimating $|\hat{K}_N(\alpha) - \hat{L}_N(\alpha)|$ for $\alpha \in \Pi$ distinguishes the cases α in a major arc and α does not belong to a major arc.

Estimate on major arc. Assume α belongs to the major arc $\mathcal{M}(\xi_0)$. Thus, by Lemma 2,

(12)
$$
\hat{K}_N(\alpha) = \tilde{S}(\xi_0)\hat{k}(N^{\prime}(\alpha - \xi_0)) + O(N^{-\nu}).
$$

Let $\xi_0 \in \mathcal{R}_s \setminus \mathcal{R}_{s-1}$. From (11), (12)

$$
|\hat{K}_N(\alpha) - \hat{L}_N(\alpha)| \leq C \sum_{s \neq s_0} 2^{-s(1+\rho)/2} \sup_{\substack{\xi \in \mathscr{R}, \\ \xi \neq \zeta_0}} [1 + N^t | \alpha - \xi|]^{-1/t}
$$

+ C2^{-s₀(1+\rho)/2} sup N⁻¹ |\alpha - \xi|^{-1/t}
 $\underset{\xi \neq \zeta_0}{\underset{\xi \neq \zeta_0}{\xi \in \mathscr{R}_{s_0}}} + C2^{-s0(1+\rho)/2} |1 - \varphi(D_{s_0}(\alpha - \xi_0))|.$

If log $N <$ log $D_{s_0} < C2^{(1 + \varepsilon)s_0}$ (by (9)), the last two terms in (13) are bounded by $(\log N)^{-(1+\rho)/2+\epsilon}$. Otherwise, since $|\alpha-\xi_0| < N^{-t+\nu} < \frac{1}{10}D_{s_0}^{-1}$, the third term vanishes. Writing for $\zeta \in \mathcal{R}_s$, $\zeta \neq \zeta_0$,

(14)
$$
|\alpha - \xi| \geq |\xi_0 - \xi| - |\alpha - \xi_0| > 1/N^{\nu}D_s - N^{-t + \nu}
$$

it follows in particular for $s = s_0$ that $|\alpha - \xi| > N^{-1-2\nu}$ and the second term in (13) is bounded by $N^{-1/3}$.

Estimate the first term of (13) as

$$
(15) \sum_{2^{(1+\epsilon)s} < \log N} 2^{-s(1+\rho)/2} \sup_{\substack{\xi \in \mathscr{R}_{\epsilon} \\ \xi \neq \xi_0}} [N^{-1}|\alpha-\xi|^{-1/2}] + (\log N)^{-(1+\rho)/2} \quad (\rho' < \rho).
$$

Again by (14), the first term in (15) is at most $CN^{-1/3}$. Hence (13) admits the bound stated in Lemma 3.

Estimate outside major arcs. If α is not in a major arc, then $|\hat{K}_N(\alpha)| < N^{-\delta}$, by Lemma 1 (the H. Weyl estimate). Estimate $|\hat{L}_N(\alpha)|$ by (11),

(16)
$$
|\hat{L}_N(\alpha)| \leq C \sum_{s} 2^{-s(1+\rho)/2} \sup_{\xi \in \mathscr{R}_s} [1 + N^t | \alpha - \xi|]^{-1/t}.
$$

By hypothesis, if $\log D_s < v \log N$, then $|\alpha - \xi| > N^{-t+\nu}$ for $\xi \in \mathcal{R}_s$. Otherwise log $N > Cs^22^s$ and $2^{-s(1+\rho)/2} < (\log N)^{-(1+\rho)/2}$. Hence (16) is bounded by $(\log N)^{-(1+\rho)/2}$, which proves Lemma 5.

LEMMA 6. The l'(**Z**)-norm of the Fourier transform of the function

(17)
$$
\sum_{0 \leq a < q} \tilde{S}(a/q) F(\alpha - a/q),
$$

on Π , *is bounded by*

(18)
$$
2q \sum_{j \in \mathbf{Z}} \sup_{0 \leq x < q} |\hat{F}(jq + x)|.
$$

PROOF. The Fourier transform of (17) at the point $x \in \mathbb{Z}$ equals

$$
\sum_{0\leq a
$$

Thus the $l^1(\mathbf{Z})$ -norm is bounded by $\sum_{0 \leq r < q} \sum_{i \in \mathbf{Z}} |\hat{F}(r^t +jq)|$, hence (18).

Taking $F(\alpha) = \hat{k}(N'\alpha)\varphi(D,\alpha)$ and $q < D$, in Lemma 6, there is a uniform bound

$$
(19) \quad \bigg\|\sum_{0\leq a
$$

Observe indeed that

$$
\hat{F}(x) \sim \int_{-\infty}^{\infty} \left[\int_{0}^{1} y^{1/t - 1} e^{-2\pi i (N'y + x)\alpha} \varphi(D_s \alpha) dy \right] d\alpha
$$

$$
= D_s^{-1} \int_{0}^{1} y^{1/t - 1} \hat{\varphi}(D_s^{-1}(x + N'y)) dy
$$

which, since φ is assumed smooth, may be estimated by

$$
CD_s^{-1} \int_0^1 y^{1/t-1} \frac{1}{1 + \left(\frac{x + N'y}{D_s}\right)^2} dy.
$$

Hence, clearly, for $q \le D_s$, also

$$
\sup_{|x| < q} |\hat{F}(jq + x)| \leq CD_s^{-1} \int_0^1 y^{1/t - 1} \frac{1}{1 + \left| \frac{jq + N'y}{D_s} \right|^2} dy
$$

and since

$$
\sum_{j\in\mathbb{Z}}\left[1+\left(\frac{jq+N'y}{D_s}\right)^2\right]^{-1}\leq C\frac{D_s}{q},
$$

(18) is bounded by a constant, proving (19).

It is now clear from the construction of the sets \mathcal{R}_s in Section 3 and (19) that

$$
(20) \qquad \bigg\|\sum_{\zeta \in \mathscr{B}_{\epsilon}}\int_{\Pi}\tilde{S}(\zeta)\hat{k}(N^{i}(\alpha-\zeta))\varphi(D_{s}(\alpha-\zeta))e^{2\pi i\alpha x}d\alpha\bigg\|_{l^{i}(\mathbb{Z})}\leq C2^{sp}.
$$

Since by Parseval's identity and Lemma **4**

$$
\left\| \sum_{\zeta \in \mathscr{R}_1 \setminus \mathscr{R}_{i-1}} \int \tilde{S}(\zeta) \hat{k}(N'(\alpha - \zeta)) \varphi(D_s(\alpha - \zeta)) \hat{f}(\alpha) e^{2\pi i \alpha x} d\alpha \right\|_{l^2(\mathbb{Z})}
$$
\n
$$
\leq C 2^{-(1 + \rho)s/2} \|f\|_{l^2(\mathbb{Z})}
$$

interpolation between (20), (21) yields, for

$$
\frac{1}{\bar{p}} = \frac{1 - \bar{\theta}}{2} + \frac{\bar{\theta}}{1} = \frac{1 + \bar{\theta}}{2},
$$
\n
$$
\left\| \sum_{\xi \in \mathscr{B}_s \setminus \mathscr{B}_{s-1}} \int \hat{S}(\xi) \hat{k}(N^t(\alpha - \xi)) \varphi(D_s(\alpha - \xi)) \hat{f}(\alpha) e^{2\pi i \alpha x} d\alpha \right\|_{\rho}
$$
\n
$$
\leq C 2^{-s[(1 + \rho)(1 - \theta) - 2\rho \theta]/2} \|f\|_{\rho}.
$$

In order that the sum over $s = 0, 1, \ldots$ in (10) is controlled, it thus suffices to fulfil the condition

$$
(1+\rho)(1-\bar{\theta})>2\rho\bar{\theta}.
$$

Let $\bar{p} < p < 2$,

$$
\frac{1}{p} = \frac{1-\theta}{2} + \frac{\theta}{1} = \frac{1+\theta}{2} \equiv \frac{1-\theta'}{2} + \frac{\theta'}{p}.
$$

Since assuming (22), by definition of L_N

$$
\left\| \int \hat{f}(\alpha) \hat{L}_N(\alpha) e^{2\pi i x \alpha} d\alpha \right\|_{p} \leq C \left\| f \right\|_{p},
$$

hence

(23)
$$
\left\| \int \hat{f}(\alpha)(\hat{K}_N - \hat{L}_N)(\alpha) e^{2\pi i x \alpha} d\alpha \right\|_p \leq C \|f\|_p
$$

and again, by Parseval and Lemma 5,

$$
(24) \qquad \left\| \int \widehat{f}(\alpha)(\widehat{K}_N - \widehat{L}_N)(\alpha) e^{2\pi ix\alpha} d\alpha \right\|_2 \leq C(\log N)^{-(1+\rho)/2} \| f \|_2;
$$

interpolation between **(23), (24)** yields

$$
(25) \qquad \bigg\| \int \widehat{f}(\alpha)(\hat{K}_N - \hat{L}_N)(\alpha) e^{2\pi i x \alpha} d\alpha \bigg\|_p \leq C(\log N)^{-(1+\rho)(1-\theta)/2} \|f\|_p.
$$

In evaluating the maximal function $\sup_N |f * K_N|$, *f* may be taken positive and N of the form 2^k . Hence, by (25),

$$
(26) \quad \left\| \sup_{k} |f * K_{2^{k}}| \right\|_{p} \leq \| \sup |f * L_{2^{k}}| \|_{p} + (\Sigma \| f * (K_{2^{k}} - L_{2^{k}}) \|_{p}^{p})^{1/p},
$$

where the second term admits the bound $(\sum k^{-(1+\rho)(1-\theta)/2})^{1/p} || f ||_p$. This leads to the condition

$$
\frac{1}{2}(1+\rho')(1-\theta')p>1.
$$

Since $\theta = \theta' \bar{\theta}$ and ρ' is any number less than ρ , this gives, by (22), the conditions

$$
(1+\rho)(1-\theta/\bar{\theta})>1+\theta,
$$

hence

$$
\rho(1-3\theta)\!>\!2\theta.
$$

The purpose of the next section is to evaluate the first term in (26).

5. An inequality

In this section, we prove the L^p -version of the inequality given in Section 3 of [B] for the L^2 -case.

LEMMA 7. Let $1 < p < \infty$ and $k \in L^1(\mathbf{R})$ satisfy a maximal inequality

$$
(27) \qquad \bigg\| \sup_{t>0} |f * k_t| \bigg\|_{L^p(\mathbf{R})} \leq C(k) \|f\|_{L^p(\mathbf{R})}, \qquad k_t(x) = \frac{1}{t} k\left(\frac{x}{t}\right).
$$

Let φ be a smooth function on **R** supported by $[-\frac{1}{2},\frac{1}{2}]$ and $1 \leq q < \varepsilon D$ $(\varepsilon = o(1))$. *Then*

$$
\|\sup_{t>0}\left|\sum_{0\leq a\n
$$
\leq C'(k)\|f\|_{t^{p}(\mathbb{Z})}.
$$
$$

We first make some remarks in order to avoid repetition of the same argument. In what follows, e stands for a small (absolute) constant depending on the choice of φ . Let $0 \le u \le 1$, then

(29)

$$
\left\| \int F(\beta)[e^{2\pi i q \beta u} - 1]e^{-2\pi i q \beta y} \varphi(D\beta) d\beta \right\|_{L^p}
$$

$$
\leq \varepsilon \left\| \int F(\beta)e^{-2\pi i q \beta y} \varphi(D\beta) d\beta \right\|_{L^p}.
$$

Let ψ be a smooth function supported by $[-1, 1]$, $\psi = 1$ on $[-\frac{1}{2}, \frac{1}{2}]$ and let $G(\beta) = F(\beta)\varphi(D\beta)$. Since we may insert a factor $\psi(D\beta)$ in the integrand, the left member of (29) equals

$$
q^{-1/p} \parallel (\hat{G} * \hat{\psi}_D)_{qu} - (\hat{G} * \hat{\psi}_D) \parallel_p \leq q^{-1/p} \parallel \hat{G} \parallel_p \parallel \hat{\psi} - \hat{\psi}_{qu/D} \parallel_1 \leq \varepsilon q^{-1/p} \parallel \hat{G} \parallel_p.
$$

LEMMA **8.** *With q, D as above*

$$
\bigg\|\int F(\beta)e^{2\pi i\beta q y}\varphi(D\beta)d\beta\bigg\|_{L^p(\mathbf{R})}\sim \bigg\|\int F(\beta)e^{2\pi i\beta q y}\varphi(D\beta)d\beta\bigg\|_{P(\mathbf{Z})}.
$$

PROOF OF LEMMA 8. We first prove that $\|\|\cdot\|_{l^2(\mathbb{Z})} \leq \zeta \|\|\cdot\|_{L^p(\mathbb{R})}$ where ζ is bounded. Let $0 \le u < 1$ and write

$$
\left\|\int F(\beta)e^{2\pi i \beta q y} \varphi(D\beta) d\beta\right\|_{l^{p}}\leq \left\|\int F(\beta)e^{2\pi i \beta q y(y+x)} \varphi(D\beta) d\beta\right\|_{l^{p}}+\left\|\int F(\beta)[1-e^{2\pi i \beta q y}]e^{2\pi i \beta q y} \varphi(D\beta) d\beta\right\|_{l^{p}}.
$$

Integrating the pth power of the first term in u, $\|\cdot\|_{L^{p}(\mathbb{R})}$ is obtained. For fixed u , estimate the second term

$$
\zeta \bigg\| \int F(\beta) [1 - e^{2\pi i \beta q u}] e^{2\pi i \beta q y} \varphi(D\beta) d\beta \bigg\|_{L^p} \leq \varepsilon \zeta \bigg\| \int F(\beta) e^{2\pi i q \beta y} \varphi(D\beta) \bigg\|_{L^p}
$$

using (29). Hence $\zeta \le 1 + \varepsilon \zeta$ and we may take $\zeta = 2$.

To prove the converse inequality, write

$$
\|\quad\|_{L^p(\mathbf{R})}\leq \|\quad\|_{l^p(\mathbf{Z})}+\left\{\left.\int_0^1\right\|\int F(\beta)e^{2\pi i\beta q\nu}[1-e^{2\pi i\beta q\nu}]\varphi(D\beta)d\beta\,\right\|_{l^p}^p du\right\}^{1/p}.
$$

Appealing to the converse inequality and (29), the inner l^p -norm is clearly bounded by $2\varepsilon \|\int F(\beta)e^{2\pi i \beta q y} \varphi(D\beta) d\beta\|_{L^p}$, proving the inequality.

PROOF OF LEMMA 7. Writing $x \in \mathbb{Z}$ as $x = yq + z$, $z = 0, 1, ..., q - 1$, the left member of (28) equals

$$
(30) \qquad \qquad \bigg\{\sum_{0 \leq z < q} \bigg| \sup_{t > 0} \bigg| \int \widehat{k}(t\beta) F_z(\beta) e^{2\pi i q \beta y} \varphi(D\beta) d\beta \bigg| \bigg| \bigg|_{l^p(\mathbf{Z}, y)}^p \bigg\}^{1/p}
$$

denoting

 \mathcal{L}

$$
F_z(\beta) = \sum_{0 \leq a < q} \hat{f}(a/q + \beta) e^{2\pi i z(a/q + \beta)}.
$$

As in the proof of Lemma 8, denote ζ the *a priori* best constant in the inequality

(31)

$$
\| \sup_{t>0} \left| \int \hat{k}(t\beta) F(\beta) e^{2\pi i q \beta y} \varphi(D\beta) d\beta \right| \|_{p}
$$

$$
\leq \zeta \left\| \int F(\beta) e^{2\pi i \beta q y} \varphi(D\beta) d\beta \right\|_{p}.
$$

For $0 \le u < 1$, write again

$$
\sup_{t>0} \left| \int \widehat{k}(t\beta) F(\beta) e^{2\pi i q \beta y} \varphi(D\beta) d\beta \right|
$$

(32)

$$
\leq \sup_{t>0} \left| \int \widehat{k}(t\beta) F(\beta) e^{2\pi i q \beta (y+u)} \varphi(D\beta) d\beta \right|
$$

$$
+ \sup_{t>0} \left| \int \widehat{k}(t\beta) F(\beta) e^{2\pi i q \beta y} [e^{2\pi i q \beta u} - 1] \varphi(D\beta) d\beta \right|.
$$

Integrating the pth power of the first term in u on [0, 1] gives, by Lemma 8, an estimate

$$
q^{-1/p} \left\| \sup_{t>0} \left| k_t * \left[\int F(\beta) e^{2\pi i \beta x} \varphi(D\beta) d\beta \right] \right\|_{L^p}
$$

\n
$$
\leq C(k) q^{-1/p} \left\| \int F(\beta) e^{2\pi i \beta x} \varphi(D\beta) d\beta \right\|_{L^p}
$$

\n
$$
= C(k) \left\| \int F(\beta) e^{2\pi i \beta q y} \varphi(D\beta) d\beta \right\|_{L^p}
$$

\n
$$
\sim C(k) \left\| \int F(\beta) e^{2\pi i \beta q y} \varphi(D\beta) d\beta \right\|_{p}.
$$

The l^p -norm of the second term in (32), for fixed $u \in [0, 1]$, is bounded by

$$
\zeta \left\| \int F(\beta) [e^{2\pi i q \beta u} - 1] e^{2\pi i q \beta y} \varphi(D\beta) d\beta \right\|_{l^{p}}
$$

\n
$$
\leq 2\zeta \left\| \int F(\beta) [e^{2\pi i q \beta u} - 1] e^{2\pi i q \beta y} \varphi(D\beta) d\beta \right\|_{L^{p}}
$$

\n
$$
\leq \varepsilon \zeta \left\| \int F(\beta) e^{2\pi i q \beta y} \varphi(D\beta) d\beta \right\|_{L^{p}}
$$

\n
$$
\leq 2\varepsilon \zeta \left\| \int F(\beta) e^{2\pi i q \beta y} \varphi(D\beta) d\beta \right\|_{l^{p}}
$$

using twice Lemma 8 and (28).

Hence, we proved that $\zeta \leq C'(k) + 2\varepsilon \zeta$ and thus $\zeta \leq C''(k)$.

Estimating (30) and applying (31) with $F = F_z$ ($z = 0, \ldots, q - 1$) now easily yields Lemma 7.

6. End of the proof

To complet the proof of (2), it remains to estimate the first term of (26), $1/p = (1 + \theta)/2$ where ρ , θ satisfy

$$
\rho(1-3\theta) > 2\theta.
$$

For fixed s, estimate $\Lambda_{p,s}$, the best constant in the inequality

$$
\|\sup_{\lambda>0}\Big|\sum_{\zeta\in\mathscr{B}_{\lambda}\setminus\mathscr{B}_{\lambda-1}}\int\widehat{f}(\zeta+\beta)\widehat{k}(\lambda\beta)\varphi(D_{s}\beta)e^{2\pi i x(\zeta+\beta)}d\beta\Big|\Big\|_{p}
$$

(33)

$$
\leq \Lambda_{p,s}\|f\|_{p}.
$$

Since, from the triangle inequality, we have

(34)
$$
\left\| \sup_{N} |f * L_{N}| \right\|_{p} \leq \left(\sum_{s} \Lambda_{p,s} \right) \| f \|_{p},
$$

the additional request will be

$$
\sum_{p,s} \lambda_{p,s} < \infty.
$$

By construction, $\mathscr{R}_{s} \setminus \mathscr{R}_{s-1}$ is the disjoint union of at most $2^{s\rho}$ subsets Γ of Π , where each Γ is a difference of cyclic subgroups. Let ψ be a smooth function on **R**, $\psi = 1$ on $[-\frac{1}{2}, \frac{1}{2}]$, $\omega = 0$ outside $[-1, 1]$. Defining

$$
F(x) = \sum_{\xi \in \Gamma} \tilde{S}(\xi) \int \hat{f}(\alpha) e^{2\pi i \alpha x} \psi(D_{s}(\alpha - \xi)) d\alpha
$$

one clearly has

(36)
\n
$$
\sum_{\xi \in \Gamma} \tilde{S}(\xi) \int \hat{f}(\xi + \beta) \hat{k}(\lambda \beta) e^{2\pi i x (\xi + \beta)} \varphi(D_s \beta) d\beta
$$
\n
$$
= \sum_{\xi \in \Gamma} \int \hat{F}(\xi + \beta) \hat{k}(\lambda \beta) e^{2\pi i x (\xi + \beta)} \varphi(D_s \beta) d\beta.
$$

Note that for $k(x) \sim x^{-1+1/t} \chi_{[0,1]}(x)$ on **R**, (27) holds for all $1 < p \le \infty$, as an easy consequence of the standard Hardy-Littlewood maximal inequality.

Hence, by Lemma 7, for $1 < r \le 2$

$$
\|\sup_{\lambda>0}\left|\sum_{\Gamma}\int \hat{F}(\xi+\beta)\hat{k}(\lambda\beta)e^{2\pi i x(\xi+\beta)}\varphi(D_{s}\beta)d\beta\right|\|,
$$

(37)

$$
\leq C(r)\left\|\sum_{\Gamma}\hat{S}(\xi)\left[\int \hat{f}(\alpha)e^{2\pi i\alpha x}\psi(D_{s}(\alpha-\xi))d\alpha\right]\right\|,
$$

For $r = 2$, Lemma 4 and Parseval give an estimate

$$
2^{-(1+\rho)s/2}\left\{\sum_{\xi\in\Gamma}\int|\widehat{f}(\alpha)|^2|\psi(D_S(\alpha-\xi))|^2d\alpha\right\}^{1/2}.
$$

Hence, since the functions $\psi(D_s(\cdot-\xi))$, $\xi \in \mathcal{R}_s \setminus \mathcal{R}_{s-1}$, are disjointly supported, it follows from Cauchy-Schwartz, by the triangle inequality,

$$
\|\sup_{\lambda>0}\left|\sum_{\xi\in\mathcal{A}_{\lambda}\setminus\mathcal{A}_{\lambda-1}}\tilde{S}(\xi)\int\hat{f}(\xi+\beta)\hat{k}(\lambda\beta)e^{2\pi ix(\xi+\beta)}\varphi(D_{\varsigma}\beta)d\beta\right\|_{2}
$$

(38)
$$
\leq C2^{sp/2-(1+\rho)s/2}\|f\|_{2}.
$$

84 J. BOURGAIN Isr. J. Math.

Since, by Lemma 6 applied to $F(\beta) = \psi(D_s \beta)$, the Fourier transform of $\sum_{\zeta \in \Gamma} \tilde{S}(\zeta) \psi(D_s(\alpha - \zeta))$ is an *l*¹(Z)-bounded function, (37) may be estimated by $C \parallel f \parallel_r$. Thus

$$
\left\| \sup_{\lambda > 0} \left| \sum_{\zeta \in \mathscr{R}_i \setminus \mathscr{R}_{i-1}} \tilde{S}(\zeta) \int \hat{f}(\zeta + \beta) \hat{k}(\lambda \beta) e^{2\pi i x (\zeta + \beta)} \varphi(D_s \beta) d\beta \right| \right\|,
$$
\n(39)\n
$$
\leq 2^{\mu s} C(r) \| f \|,
$$

by (36), (37) and the triangle inequality.

Writing $1/p = (1 - v)/2 + v/r$, interpolation between (38), (39) gives

$$
\Lambda_n \leq C(r) 2^{-s(1-v)/2} 2^{s\rho v}
$$

leading to the condition

(40) $1 - v > 2 \rho v$

where v is any number chosen larger than θ . Hence

$$
(41) \t\t\t 1-\theta>2\rho\theta
$$

ensures (35).

The existence of ρ fulfilling both (27) and (41) leads to the restriction

$$
\theta < \frac{1}{3}, \quad \theta^2 + 4\theta - 1 < 0, \quad \text{hence} \quad \theta < \sqrt{5 - 2}.
$$

This restriction is equivalent to

$$
\frac{1}{p} < \frac{\sqrt{5}-1}{2} \quad \text{or} \quad p > \frac{\sqrt{5}+1}{2}.
$$

This completes the proof of the result stated in the abstract.

REFERENCES

[B] J. Bourgain, *On the maximal ergodic theorem for certain subsets of the integers,* Isr. J. Math. 61 (1988), 39-72, this issue.