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ABSTRACT 

The purpose of this note is to show how the results of [B] on the pointwise 
ergodic theorem for L2-functions may be extended to L ~ for certain p < 2. 
More precisely, we give a proof of the almost sure convergence of the means 

1 
(1) ~ , ~ . <  7 ~ f  (t >_- 1) 

given a dynamical system (f~, B,/z, T) andfofclass LP(f~,/t), p > (v'~ + 1)/2. 

1. Reduction 

Ergodic means o f  the form (1) and more  general were studied in [B] and 

almost sure convergence shown assuming f is an L2(/z)-function. Extending 

this result to L p, p < 2 requires addit ional  work. We will only consider here 

sets of  the form {n t ] n = 1, 2 . . . .  } (t > 1) for the sake of  simplicity, but  our  

argument  may be adapted to sets {q~(n) I n = 1, 2 . . . .  }, q~ a polynomial  with 

integer coefficients, as well. Presently, our  method,  based on interpolation,  

does not cover  the entire range p > 1 and the condi t ion p > (v/5 + 1)/2 seems 

needed. 

By s tandard t runcat ion arguments and the L 2- result proved in [B], it suffices 

to obtain the maximal  inequali ty on L p, i.e., 

(2) sup ( l  y. T~,,)f ) Lp<u) < C l[ f ll LP(#) • 
N l<-_n<N 
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This is a problem of  a "finite nature" and, as shown in [B], the general case is 

equivalent to the case of  the shift on Z. Thus let 

where 

J r / f =  sup I f*KN [ 
N 

1 
= Y~ ,~,,~. (3) KN NI<=.<-N 

We prove an inequality 

(4) II ~ a f  II ,,<z> ---< C(p)II f [I,~<z) 

provided p > (1 + v/5)/2. This restriction seems only technical. The main 

purpose of  this paper is to show that the methods exploited in [B] are not 
purely L 2. 

The argument is based on the same ingredients as for p --- 2, proved in [B], to 

which the reader is referred for some of  the facts listed below. 

2. Exponent ia l  sums 

The dual group of  Z is the circle II and the Fourier transform/£~(a),  a E H, 

of  K N is given by the Gauss-Weyl  sum 

1 
C -- 2~tinta. 

(5) /¢~(~) = N ~-<_°_-<N 

Fix o = ~ and define major arcs J//o = {a E H; I a [ < N - t  +o } and for 1 < a < 

q < N ° , ( a , q )  = 1, J l ( q , a ) = { a E l - I ;  I ~ - - a / q l  < N  '+°}. 

LEMMA 1. l f  aEY l  does not belong to a major arc, I/~N(a)[ <= N-~  for some 

= ,fit) > 0. 

LEMMA 2. I f  a E ~ l ( q ,  a), a = a/q +fl ,  then I£s(a ) = S(q, a)l~(Ntfl) + 
O(N -~) where 

1 
S(q, a) = -  ~ e -2nir'a/q and k(x) = t-Jxl"-~%io,~(x ). 

q O<r<q 

L~MMA 3. I f  q = lip;', is the prime decomposition o f  q and (a, q) = 1, then 

tS(q,a)[ <= CHpj -m, 
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where we let 

m 
m = O  i f rn=O,  m = ½  i f m = l ,  m = l  i f 2 < m < t  and m = - -  i fm>=t.  

t 

3. Partitioning the rationals 

Fix 0 < p < 1 and let { pj } be the sequence of  consecutive primes. Define for 
1 < k  < 2  ps 

(6) Q~.k = H P]'. 
( k -  l ) 2 ~ < j ~ k 2  ~ 

Hence 

(7) 

Define 

2log Q~,k <- Cs22s. 

(8) ~ s  = { a ~ H  l .Q~.,Qs.k ~ Z  for some 2 <= k < 2 ~p) 

forming an increasing sequence whose union is I1 C~ Q. Since 

?~s = ZQ~,~ U ~.J [Zo,.l.Q,,k \ ZQs,l ] 
< .<2ps 2=k= 

where 

Z o = {a/Q I O < a < Q } ,  

~ is the disjoint union of  2 ps differences of  cyclic subgroups of  H. The next 

fact is straightforward from Lemma 3 and (8). 

LEMMA 4. I f a / q ~ H \  ~s,  then IS(q,a) l  < C2 -°+p)~/2 

4. Construction of approximate kernels 

For a ~ Q  o H, write S(a)  = S(q, a) i f a  -- a/q = 1. By (7), there is an integer 

D~ for each s, satisfying 

1 
(9) 210gQs , k<- -21ogD s ( l < k < 2  sp) and logDs<=Cs22 s. 

100 

Let ~o be a smooth function on R, rp = 1 on [ - t-t0, 4]  and rp = 0 outside [ - ½, ~]. 

Substi tute K~ for a kernel Lu whose Fourier  t ransform is given by 
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(10) I~y(a) = l~(N%)~o(a) + ~ ~ S(~)l~(N'(a - C))~O(Ds(a - ~)). 
s=0 ~,\~,_j 

There is the following approximation property: 

LEMMA 5. F o r p ' < p ,  ]]/(N --£U ]]= ----< C(logN) -(l+"'v2. 

PROOF. IfC ¢ C' in ~¢s, then clearly I~ - C ' [  > 1/10Ds. Also, by van der 

Corput's lemma, 1~(2)1 < C I 2 1  -"t .  From Lemma 4, it follows that for 

] ~  S(~) /~ (N ' (a  - C)~(D,(a - ~'))} =< C2  - ' ( '  +p)/2 sup [1 + N ' l a  -- ~1] - '/' 

(11) 

Estimating [/£N(s) - £N(a) ! for a E H  distinguishes the cases a in a major arc 
and a does not belong to a major arc. 

Est imate on major arc. Assume a belongs to the major arc Jg(~0). Thus, by 
Lemma 2, 

(12) /£N(a) = S(Co)/~(Nt(s - Co)) + O ( N - ° ) .  

Let CoG ~¢so\ ~¢~o-,. From (11), (12) 

I](N(S)-- £N(S)I < C ~, 2-s(l+P)/2sup [1 + N t l s - ~ l ]  - '/ '  
s ~ s o  ~E.~t ,  

(13) + C2 -so¢1 +p)/2 sup N - l  Is  - ~l- l i t  

~÷e.o 

+ C 2 - s o "  +~;21 1 - ~0(D~o(S - ~o))1. 

If  log N < log D~ o < C2 ~* +O~o (by (9)), the last two terms in (13) are bounded by 
(log N) -°  +PVZ+L Otherwise, since Is - Col < N - ' + ~  < ~-~1 ,  the third term 
vanishes. Writing for ~ ~ ~ ,  ~ ~= Co, 

(14) I s - ~ ]  I 0- - l a - ¢ l  > 1 / N ° D s - N  -t+° 

it follows in particular for s = So that I s - ~ I > N -  ~ - zo and the second term in 
(13) is bounded by N-v3. 

Estimate the first term of  (13) as 

(15) ~ 2 -s(l+p)/2 sup [N -t Is - CI -fit] ÷ (log N)  -O + p')/2 (p, <p) .  
2(t +'~<tog N ~ s  
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Again by (14), the first term in (15) is at most CN- t/3. Hence (13) admits the 
bound stated in Lemma 3. 

Estimate outside major arcs. I fa  is not in a major arc, then [RN(a) I < N -a, 

by Lemma 1 (the H. Weyl estimate). Estimate I£N(a)l by (11), 

(16) I £N(~) I ~ C ~ 2 -s~l +pW sup [1 + Ntlot - -  ~ [1 - ' / t .  
s ~ s  

By hypothesis, if log Ds < o log N, then ] a - ~ I > N -  ' + o for ~ E ~s- Other- 
wise log N > Cs22 s and 2 -so +pv2 < (log N) -~1 +p,)/2. Hence (16) is bounded by 

(log N) -~1 +p,v2, which proves Lemma 5. 

LEMMA 6. 

(17) 

The P(Z)-norm of  the Fourier transform of the function 

Y, S(a/q)F(a - a/q), 
O<=a<q 

on H, is bounded by 

(18) 2q Y, sup I F( jq  + x ) l .  
jEZ O<=x <q 

PROOF. The Fourier transform of (17) at the point x E Z equals 

Y, S(a/q)e2~°~'qP(x) = ( #  {0 < r < q Ix - r' ~qZ})_f'(x). 
O<-_a<q 

Thus the P(Z)-norm is bounded by Y0_-<,<q XjEzlP( rt +Jq) l ,  hence (18). 

Taking F(a) = I¢(N%)~o(Dsa) and q < Ds in Lemma 6, there is a uniform 

bound 

(19) ~, f S(alq)l¢(Nt(a - alq))~o(D,(a - a/q))e2~i~xda :~z) < C. 
O<a<q ,~ 

Observe indeed that 

F(x ) ,-., : : ~  [ :o'  Y'/t- ' e-  2"ov'Y + x)'~o( D~a)dy] da 

-- 0 7  ~ y ' - ' ~ ( D ; - ' ( x  + N'y))dy 

which, since ~o is assumed smooth, may be estimated by 



78 J. B O U R G A I N  Isr. J. Math.  

f o  ~ 1 CD;- l y 1,- l 
1 + (x + Ntyt2 

D]) 
dy. 

Hence, clearly, for q = D,, also 

sup Ilg'(jq + x)l < CD~ -L ~0 t y,/t-, 
[xl <q I + jq +- Nty 2 

D, 

dy 

and since 

. = <  , 

jez D~ ] J q 

(18) is bounded by a constant, proving (19). 
It is now clear from the construction of the sets ~s  in Section 3 and (19) that 

(20) X f S( ¢)I¢(Nt( a - ¢))~o(Os(a - ¢))e2"'~xaa < C2 "p 
¢ E~¢, d R  I~(z) 

Since by Parseval's identity and Lemma 4 

¢~,_,.. f S( ~)I~(N;(a - ~))¢#(Ds(a -- ~))f(a)e2'a'~da 
/2(Z) 

(21) 
< C2 -(' +p)s/2 II/ll,2~z~ 

interpolation between (20), (21) yields, for 

1 1 - 0  0 1 + 0  

p" 2 1 2 

Y, f ,~( ¢)l~(N'(a - ¢))q~(Ds(a - ¢))f(a)e2"i'~da t~ 
C E ~ , \  Jl',_ t 

___< C2 -st" + m  - 0~- 2m2 II f II ~. 

In order that the sum over s =- 0, 1 , . . .  in (10) is controlled, it thus suffices to 
fulfil the condition 

(22) (1 + p ) ( l  - 0 ) >  2p0. 

L e t p  < p  < 2 ,  
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1 1 -- 0 0 1 + 0 1 --  0' 0' 

p 2 1 2 2 p 

Since assuming (22), by definition o f  Lu  

V f(a)gN(a)e:"ix"da 
. .  p 

hence 

(23) 

C II flip, 

f f(a)(R~ - £N)(a)e2"X"dc~ p <= C II f l ip  

and again, by Parseval and Lemma 5, 

(24) f f(OO(I~N -- l~.u)(a)e2"ix"da 2 < C(log N) - (1  +p')/2 II f II 2; 

interpolation between (23) ,  ( 2 4 )  yields 

(25) f f (a)(k~.  -- [,N)(a)e2"'x"da < C(log N) -(' +¢×'- 0,)/2 II f II ~. 
P 

In evaluating the maximal function SHPN I f *  KN ], f m a y  be taken positive and 
N o f t h e  form 2 k. Hence, by (25), 

(26) suplf*K2~[, p--< I[suplf*L2*{ I[P+(Y[If*(K2*-L2~)I[ff)'/P' 

where the second term admits the bound (Zk-~t +p,×~-o.)/2) t/p I1 f [1 p. This leads 
to the condition 

½(1 + p') (1  - O') p > 1. 

Since 0 = 0'0 and p' is any number less than p, this gives, by (22), the 
conditions 

(1 +p)(1 - 0 / 0 ) >  1 + 0, 

hence 

p(1 - 38) > 20. 

The purpose of the next section is to evaluate the first term in (26). 
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5. An inequality 

In this section, we prove the L p- version of the inequality given in Section 3 
of  [B] for the L2-case. 

L~MMA 7. Let 1 < p < ~c and k EL~(R) satisfy a maximal inequality 

(27) sup l f*  k, I t  > o L',R, <--C(k) llfllz'<R" k '(x)~--- lk(t) ' t  

Let ~ be a smooth function on 
(e = o(I)).  Then 

(28) 

R supported by [ - ½, ½] and 1 <= q < eD 

s, u0P 0 a ~ < , f  l~(tp)f(a/q + fl)e2"~/q+#'~(Dfl)dfl ,,,z, 

C'(k) II f II ~,~z). 

We first make some remarks in order to avoid repetition of the same 
argument. In what follows, e stands for a small (absolute) constant depending 

on the choice of ~. Let 0 < u < 1, then 

f Ftfl)[ e2''q#u - 1]e-2.iq#y~(Dfl)dfl 
L p 

(29) 

f < e F(fl)e-2~iq#Y~(Dfl)dfl L" 

, ~, ~] and let Let ~u be a smooth function supported by [ - 1 l], ~u = 1 on [ - ~ l 

G(fl) = F(fl)~(Dfl). Since we may insert a factor ~(Dfl) in the integrand, the 
left member of (29) equals 

LEMMA 8. With q, D as above 

f F(fl)e2Xi#qY~(Dfl)dfl L,tm "~ 5 F(fl)e2~iBqY~(Dfl)dfl i,~z," 

PROOF OF LEMMA 8. We first prove that II II,'lz~ =<- ( U II ~.'~ where ( is 
bounded. Let 0 < u < 1 and write 

f F(#)e2~i#q~(Dfl)dfl e 

=< f F(,g)e='*#,~'~+~¢(Dp)d# + f F(/~)[I - e='#"]e='*#~'qJ(Dp)dp t" 
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Integrating the pth power of the first term in u, II II L'(R) is obtained. For fixed 
u, estimate the second term 

¢ f F(fl)[1-ez"'pq"]e2"'#qy~o(Dfl)dfl L "<e¢ f F(~)e~""p'~(D~) L, 

using (29). Hence ( < I + e( and we may take ( = 2. 
To prove the converse inequality, write 

{fo'f ;}"' II II L'(R)--<-- II II/'(z)+ F(fl)e2"~#qY[1 - e2"#qul~o(Dfl)dfl du 

Appealing to the converse inequality and (29), the inner/P-norm is clearly 

bounded by 2e II fF(fl)e2~'#qr~(Dfl)dfl II ~,, proving the inequality. 

PROOF OF LEMMA 7. Writing x ~ Z as x = yq + z, z = 0, 1 , . . . ,  q - 1, the 

left member of (28) equals 

(30) -~ Y~ sup ~l~(tfl)Fz(fl)e2"q#'~o(Dfl)dfl ,~z,,,} '/p 
I O<=z<q t > O  '~ 

denoting 

F~(fl) = ~ f(a/q + fl)e 2~'z(~'q+#). 
O<a<q 

As in the proof of Lemma 8, denote ( the a priori best constant in the 

inequality 

sup ~ I~(tfl)F(fl)e2~q#Y~o(Dfl)dfl 
t > 0  '~ IP 

(31) 
< ( J F(fl)e2~'#qr~°(Dfl)dfl 

if" 

For 0 _< u < 1, write again 

slup o : £:(tfl)F(fl)e2"iq#Y~°(Dfl)dfl 

(32) < sup f I~ ( t fl )F ( fl )e2"i##( r + u )~o( D fl )d fl 
t > O  , . 1  

+ sup : ~(lfl)F(fl)e2niq'Y[e 2"iq'u- l]tp(Dfl)dfl . 
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Integrating the pth  power of the first term in u on [0, 1] gives, by Lemma 8, an 
estimate 

q-'/P sup k,.[ f F(fl)e2"i'x~o(Dfl)dfl] L" 

<= C(k)q-l/p f F(fl)e2~,ax~o(Dfl)dfl L, 

= C(k) f F(fl)e2~'~qY~(Dfl)d,G 
L p 

.-. C(k) f F(fl)e2~'~q"p(Dfl)dfl 
l p"  

The/P-norm of the second term in (32), for fixed u E[0, 1], is bounded by 

f F(fl)[ e2~iqB" - 1]e2~iqay~p(Dfl)dfl 
I p 

<= 2~ f F(fl)[e z~iq~u -- 1]e2~iqPYq~(Dfl)dfl 
! L p 

< ~ f F(fl)e2~iq~"~o(Dfl)dfl 
• *J L p 

< 2e~ f F(fl)e2~q~Y~o(Dfl)dfl  t. 

using twice Lemma 8 and (28). 
Hence, we proved that ~ < C'(k) + 2e~ and thus ~ =< C"(k). 
Estimating (30) and 

easily yields Lemma 7. 
applying (31) with F=F: (z = 0 . . . .  , q -  1) now 

6. End of the proof 

To complet the proof of (2), it remains to estimate the first term of (26), 
l/p = (1 + 0)/2 where p, 0 satisfy 

p(1 - 3 0 ) > 2 0 .  

For fixed s, estimate Ao,s, the best constant in the inequality 

sup~>o ¢E~.~.._, f f( ~ + fl)l~(2fl)~(D'fl)e2~x(~ +B)dfl[ 

(33) 
__<_ A,.~ II f I1,,. 
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Since, from the triangle inequality, we have 

(34) suPlf*LN[ N " ----< ( ~  AP'~) 11 f l [ ' '  

the additional request will be 

(35) XAp,s < oc. 

B y  construction, ~ ,  \ ~ _  1 is the disjoint union of at most 2 sa subsets F of FI, 
where each F is a difference of cyclic subgroups. Let ~, be a smooth function on 
R ,  V = 1 o n  [ - ½, ½], 09 = 0 o u t s i d e  [ - 1,  1].  Defining 

= Y~ S(~) ff(a)e2~'~u(O~(a - O)da F(x) 
, 3  

one clearly has 

(36) 

E ,~(~) f f ( {  + fl)lc(2fl)e2'~g"a*+P)q~(Dsfl)dfl 

= ~r f *~( ¢ + fl)/~(2fl)e2='-~(* +~)~(D, fl)dfl. 

Note that for k(x) .-.x-~+l"Zto.1](x ) on R, (27) holds for all 1 < p < ac,, as an 
easy consequence of the standard Hardy-Littlewood maximal inequality. 

Hence, by Lemma 7, for 1 < r _-< 2 

(37) 
<= ~ a e 2~i':'-' D a / 

For r = 2, Lemma 4 and Parseval give an estimate 

J x f ,f<o)l l - 
"~{eF 

Hence, since the functions v ( D s ( - -  ~)), ~ ~s \ ~s - l ,  are disjointly sup- 
ported, it follows from Cauchy-Schwartz, by the triangle inequality, 

sup Y~ S(~) f f(~ + fl)l~(2fl)e2'~ix<¢+B)~(Dsfl)dfl 2 

(38) 
C 2 " / 2 - °  +P)s'2 II f i t >  
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Since, by Lemma 6 applied to F(f l ) -  ~,(Dsfl), the Fourier transform of 
7.¢er S(~)~u(Ds(a - ~)) is an ll(Z)-bounded function, (37) may be estimated by 

C II f II ,- Thus 

. sup~>o ¢ X  , 2 : \  ~¢(¢) .2 f f(  ¢ + fl)l~(~fl)e2~'x(¢ +P)9(D,fl)dfl r 

(39) 
< 2P'C(r) II f II, 

by (36), (37) and the triangle inequality. 
Writing l/p = (1 - 0)/2 + o/r, interpolation between (38), (39) gives 

leading to the condition 

(40) 

Ap,s < C(r)2-st1- v)/22spo 

I - o > 2 p o  

where v is any number chosen larger than 0. Hence 

(41) 1 - 0 > 2pO 

ensures (35). 
The existence ofp  fulfilling both (27) and (41) leads to the restriction 

0 < ~ ,  0 2 + 4 0 - - 1 < 0 ,  hence  0 < v r 5 - 2 .  

This restriction is equivalent to 

I V/5--1 v /5+ l  
- < ~  or p >  
p 2 2 

This completes the proof of the result stated in the abstract. 
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